altmarius

cultură şi spiritualitate

Trigonometry, Beats, and Instrument Tuning

By  on 25/08/2017
piano_staff

Sometimes mathematical formulas that only seem to be interesting from a theoretical point of view can reveal unexpected connections with some applied problem.

This is the case of the “sum to product” trigonometric formula

\displaystyle\sin(x)+\sin(y)=2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)

This formula has a direct application in explaining an acoustic phenomenon called beats. Let’s see what this is all about.

Beats

When you play two notes with slightly different pitch, the resulting sound seems to appear and disappear as someone raises and lowers the volume with a certain frequency. This phenomenon is known as a beat. Trigonometry will help us explain it.

The two notes played can be represented by the trigonometric functions

\begin{aligned} f_1(t) & = \sin(\omega_1 t)\\f_2(t) & = \sin(\omega_2 t) \end{aligned}

that oscillate in time with the two frequencies \omega_1 \omega_2  (to be precise those are the angular frequencies but in this post I will call them simply frequencies).

Acoustic phenomena are (to a good approximation) linear, and the sound of two notes played together is equal to the sum of the two single notes

S(t)=\sin(\omega_1 t)+\sin(\omega_2 t)

With the aid of the sum to product formula, we can write the “sound” function as

\displaystyle S(t)=2\sin\left(\frac{\omega_1+\omega_2}{2} t\right)\cos\left(\frac{\omega_1-\omega_2}{2}t\right)=2\sin\left(\omega t\right)\cos\left(\delta t\right)

where in the last term we have defined

\begin{aligned}\omega&=\frac{\omega_1+\omega_2}{2}\\ \delta&=\frac{\omega_1-\omega_2}{2}\end{aligned}

If the two frequencies are very close to each other \omega_1\sim\omega_2  we have that \omega  is also similar (the mean between them) and \delta  is a very small value compared to \omega  (the difference between two similar values).

With \delta  being much smaller than \omega , we can interpret it as a periodic change in the amplitude A(t) = 2 \cos(\delta t)  applied to the note \sin(\omega t)

S(t)=A(t)\sin(\omega t)

so we can see that A(t)  acts as a periodic volume change of the sound \sin(\omega t) The smaller the difference is between the two original frequencies, the slower is the beat frequency \delta .

In the following image you can see an example of the two functions f_1 f_2  (top graph) and the resulting function S  (bottom graph).

beat

And the following is the corresponding sounds. At the beginning you can hear the two notes separately and then the effect created by the two notes played together.

Audio Player

Instrument Tuning

Beats are used to tune instruments. Let’s see how this works.

Assume you have to tune a guitar string using a diapason as a reference. If the guitar string is tuned somewhere near the note of the diapason, playing them together will create a beat.

Usually it’s difficult to understand if you have to raise or lower the string tension to perfectly tune the string. It’s easier to proceed by trial and error.

Let’s say you try raising the string tension (and so the note frequency), you play the string again and the diapason, and hear that the beat frequency has increased. That means raising the tension is going in the wrong direction. You slowly lower the string tension until the beat frequency is so small that it’s no longer noticeable. Congratulations! Now your guitar string reproduces (for every practical purpose) the same note as the diapason.

And the other 5 strings? The process is the same but instead of the diapason you can take other notes played on the string you already tuned as reference.

Of course, there are apps you can use to tune instruments, but if you are playing your guitar on a beach surrounded by a group of appreciative listeners, you’d better know how to tune your guitar the old-fashioned way or you’ll instantly lose their trust of your playing skills!


This article was originally published on degiuli.com.

Vizualizări: 58

Adaugă un comentariu

Pentru a putea adăuga comentarii trebuie să fii membru al altmarius !

Alătură-te reţelei altmarius

STATISTICI

Free counters!
Din 15 iunie 2009

198 state 

(ultimul: Guyana)

Numar de steaguri: 262

Record vizitatori:    8,782 (3.04.2011)

Record clickuri:

 16,676 (3.04.2011)

Tari lipsa: 44

1 stat are peste 600,000 clickuri (Romania)

1 stat are peste 90.000 clickuri (USA)

1 stat are peste 40,000 clickuri (Moldova)

3 state au peste 10.000 clickuri (ItaliaFranta,  

Germania)

6 state au peste 5.000 clickuri (Olanda, Belgia, Marea Britanie, Canada, UngariaSpania )

10 state au peste 1,000 clickuri (Polonia, Rusia,  Australia, IrlandaIsraelGreciaElvetia ,  Brazilia, Suedia, Austria)

50 state au peste 100 clickuri

23 state au un click

Rating for altmarius.ning.com 

altmarius.ning.com-Google pagerank,alexa rank,Competitor

DE URMĂRIT

1. ANTICARIAT ALBERT

http://anticariatalbert.com/

2. ANTICARIAT ODIN 

http://anticariat-odin.ro/

3. TARGUL CARTII

http://www.targulcartii.ro/

4. PRINTRE CARTI

http://www.printrecarti.ro/

5. MAGAZINUL DE CARTE

http://www.magazinul-de-carte.ro/

6 ANTICARIAT PLUS

http://www.anticariatplus.ro/

7. DEPOZITUL DE CARTI 

http://www.calinblaga.ro/

8. CARTEA DE CITIT

http://www.carteadecitit.ro/

9. ANTICARIAT ON-LINE
http://www.carti-online.com/

10. ANTICARIATUL DE NOAPTE

 http://www.anticariatuldenoapte.ro/

11. ANTICARIATUL NOU

http://www.anticariatulnou.ro

12. ANTICARIAT NOU

https://anticariatnou.wordpress.com/

13. ANTICARIAT ALEPH

https://www.anticariataleph.ro/

14. ANTIKVARIUM.RO

http://antikvarium.ro

15.ANTIKVARIUS.RO

https://www.antikvarius.ro/

16. ANTICARIAT LOGOS

http://www.anticariat-logos.ro/

17. ANTICARIAT.NET

http://www.anticariat.net/informatii-contact.php

18. TIMBREE

www.timbree.ro

19. FILATELIE

 http://www.romaniastamps.com/

20 MAX

http://romanianstampnews.blogspot.com

21. STAMPWORLD

http://www.stampworld.com

22. LIBMAG

https://www.libmag.ro/oferta-carti-polirom/?utm_source=facebook-ads-7-99-polirom&utm_medium=banner-facebook&utm_campaign=7-99-polirom-facebook&utm_content=new-3

23. BUCURESTIUL MEU DRAG

http://www.orasul.ro/

24. MAGIA MUNTELUI

http://magiamuntelui.blogspot.com

25. RAZVAN CODRESCU
http://razvan-codrescu.blogspot.ro/

26.RADIO ARHIVE

https://www.facebook.com/RadioArhive/

27.EDITURA UNIVERSITATII CUZA - IASI

http://www.editura.uaic.ro/produse/colectii/documenta/1

28. EDITURA ISTROS

https://www.muzeulbrailei.ro/editura-istros/

29 ORIZONTURI CULTURALE

http://www.orizonturiculturale.ro/ro_home.html

30. SA NU UITAM

http://sanuuitam.blogspot.ro/

31. MIRON MANEGA
http://www.certitudinea.o

32. NATIONAL GEOGRAPHIC ROMANIA

https://www.natgeo.ro/revista

33. KORUNK

http://ideakonyvter.ro/53-korunk

Insignă

Se încarcă...

Anunturi

Licenţa Creative Commons Această retea este pusă la dispoziţie sub Licenţa Atribuire-Necomercial-FărăModificări 3.0 România Creativ

Note

Erfolgsgeschichte Taunusbahn

Creat de altmariusclassic Sep 13, 2013 at 11:02am. Actualizat ultima dată de altmariusclassic Sep 13, 2013.

Schnell und Steiner

Creat de altmariusplus Iun 19, 2013 at 1:59pm. Actualizat ultima dată de altmariusplus Iun 19, 2013.

Grosse Kunstfuehrer zum Schnell &Steiner

Creat de altmariusclassic Dec 21, 2012 at 6:55pm. Actualizat ultima dată de altmariusclassic Dec 21, 2012.

© 2019   Created by altmarius.   Oferit de

Embleme  |  Raportare eroare  |  Termeni de utilizare a serviciilor